
8 2 I E E E  S O F T W A R E S e p t e m b e r / O c t o b e r  2 0 0 0 0 7 4 0 - 7 4 5 9 / 0 0 / $ 1 0 . 0 0  ©  2 0 0 0  I E E E

Unfortunately, researchers and managers
within the software community tend to
share a belief that success depends on the
ability to predict changes in the environ-
ment and to develop rational plans to cope
with these changes. Predictability, however,
is a property of simple systems. Reality is
different—an environment is not a simple
system, is not predictable, is not entirely
knowable, and is definitely not controllable
by the software manager or software or-
ganization. As I'll use this article to show,
the sooner we admit this to ourselves, the
sooner we can develop more useful models
for improving software development.

Alice and the Croquet Game
To most small software organizations,

their environment is like the croquet game in
Alice in Wonderland—everything constantly
changes around the player. In Alice’s game,

the croquet balls were live hedgehogs, the
mallets were live flamingoes, and the arches
were card soldiers. The players all played at
once, without waiting for turns, and they
had to fight the hedgehogs, which con-
stantly crawled away, the flamingoes, which
often twisted themselves around into the op-
posite direction, and the card soldiers, who
frequently abandoned the game. As Alice
did, small organizations face environmental
turbulence. They require an improvement
approach that recognizes 

■ the need for a dramatically shorter time
frame between planning and action; 

■ that planning an action does not provide
all the details of its implementation; and 

■ that creativity is necessary to make
sense of the environment. 

Improvisation is an improvement ap-

focus
Improvisation in
Small Software 
Organizations

Tore Dybå, SINTEF, NorwayImprovisation can
give valuable 

insights into the
relationship 

between action
and learning in
small, software-

intensive
organizations. As

this article de-
scribes, a specific

challenge involves
balancing the 

refinement of the
existing skill 

base with the 
experimentation
of new ideas to

find alternatives
that improve on

old ideas.

W
e are witnessing an explosive growth in the size and complexity
of problems that software can address. Software organizations
and their environments—which includes their market condi-
tions, customers, suppliers, and recruitment base for future em-

ployees—are also experiencing complex interactions, as well as the implications
of rapid changes in technology. But there is an important distinction between
acknowledging complex interactions and understanding or controlling them. 

SE in the small



proach that can help us better understand
the relationship between action and learn-
ing in small software organizations. For that
reason, small software organizations should
become more improvisational to survive in
an increasingly turbulent and complex envi-
ronment. Most research focuses on large or-
ganizations, but I’d like to explore the envi-
ronmental turbulence that small organiza-
tions face. Software organizations should
pay more attention to future demands and
seek the opportunities that are inherent in
experimenting. Improvisation links a strong
skill base with such experimentations and
could be a viable alternative for improve-
ment in small software organizations.

Improvisation
Improvisation deals with the unforeseen.

It involves continual experimentation with
new possibilities to create innovative and
improved solutions outside current plans
and routines. The explorative nature of im-
provisation necessarily involves a potential
for failure, leading to the popular mis-
conception that improvisation is only of a
spontaneous, intuitive nature that happens
among untutored geniuses or in immature
organizations. However, organizational
improvisation does not emerge from thin
air. Instead, it involves and partly depends
on the exploitation of prior routines and
knowledge. Paul Berliner asserted that “Im-
provisation involves reworking precom-
posed material and designs in relation to
unanticipated ideas conceived, shaped, and
transformed under the special conditions of
performance, thereby adding unique fea-
tures to every creation.”1

Generally, there are different levels of im-
provisation, ranging from interpreting or
minimally adjusting an already existing
model (through embellishment and variation)
to radically altering the original models.1

Improvisational activities that fall under
interpretation and minor adjustment depend
on the models with which they start, while ex-
treme improvisation depends more heavily on
past experience and memory. Berliner ex-
plained the role experience and knowledge
plays in jazz improvisation when he described
good jazz improvisers as having large vocab-
ularies, repertory storehouses, and a reservoir
of techniques. Hence, improvisation mixes
previously learned lessons with the current

setting’s contingencies. This mix, however,
points to improvisation’s core paradox
(which is also at the heart of software process
improvement (SPI)): Too much reliance on
previously learned patterns tends to limit the
explorative behavior necessary for improvisa-
tion. Yet too much risk-taking leads to fruit-
less experimentation and repeated failures.  

Improvisation in Software
Development

Today, the dominant perspective on soft-
ware development is rooted in the rationalis-
tic paradigm, which promotes a product-line
approach to software development using a
standardized, controllable, and predictable
software engineering process. From this per-
spective, the software literature advocates
discipline and replacing routinized human
labor with mechanical routines and factory-
like automation. As a result, a large part of
the SPI community has promoted a rational,
“best practices” approach to SPI (see the
“Current Practices” sidebar). The Software
Engineering Institute has advocated the use
of statistical process control techniques (spe-
cifically control charts) in recent technical
reports, and it has proposed changes for the
CMM to explicitly support the use of rigor-
ous statistical techniques. 

But software development is not manu-
facturing. It is not a mechanical process with
strong causal models appropriate for a pas-
sive improvement approach based on SPC.
On the contrary, software development is
largely an intellectual and social activity, re-
quiring the ability to deal with change above
the ability to achieve stability.2 Therefore,
we need to distance ourselves from the as-
sumptions underlying the rationalistic, linear
model of software engineering and admit
that reality for most small software or-
ganizations is a nondeterministic, multidi-
rectional flux that involves constant negotia-
tion and renegotiation among and between
the groups shaping the software.

Balance
We shouldn’t abandon discipline alto-

gether—there needs to be a balance between
discipline and creativity in software devel-
opment.3 This balance can be challenging,
because losing sight of software work’s
creative, design-intense nature leads to sti-
fling rigidity, but losing sight of the need for

S e p t e m b e r / O c t o b e r  2 0 0 0 I E E E  S O F T W A R E 83

Too much
reliance on
previously

learned
patterns tends

to limit the
explorative

behavior
necessary for
improvisation.



discipline leads to chaos. In software, as in
jazz, discipline enables creativity.4

A distinct characteristic of software devel-

opment, as with all improvisational processes,
is the fact that we cannot specify results com-
pletely at the outset of the work process. This

8 4 I E E E  S O F T W A R E S e p t e m b e r / O c t o b e r  2 0 0 0

Basically, there are three ways in which a software organi-
zation can improve its process capability using “best practice”
models such as the CMM:1 it can increase the average per-
formance (the mean of the performance distribution), it can re-
duce the variance in performance (increase predictability), or it
can use a combination of both. Increased average perform-
ance is a general feature of experiential learning, and it is
clearly beneficial for competitive advantage. Reduced vari-
ance, however, is not necessarily an advantage. In fact, for
most small software companies, competition can turn reduced
variance into a major disadvantage.

To examine the best practice approach to improvement and
its consequences for competitiveness in small software organi-
zations, let’s consider a simple model James March devised,2

which assumes that survival is based on comparative per-
formance within a group of competing organizations. Further-
more, each single performance is drawn from a performance
distribution specific to a particular organization. The mean of
the distribution reflects the organization’s ability level, and the
variance reflects the organization’s reliability.

For small software organizations, performance samples are
also small. Relative position does not depend on ability alone
but is a consequence of ability and reliability.3 Moreover, the
competitive environment of most small software organizations
is such that only the best survive—and survival depends on
having an extreme performance draw. Thus, improving aver-
age ability helps relatively little, and increasing reliability (re-
ducing variance) can detrimentally affect survival. 

In an extreme case, where the organization faces only one
competitor, increases in average performance always pay off,
whereas changes in variance have no effect on competitive ad-
vantage. However, when there are several competitors, in-
creases in either the mean or the variance have a positive ef-
fect. As the number of competitors increases, the variance’s
contribution to competitive advantage increases. Ultimately, as
the number of competitors goes to infinity, the mean perform-
ance becomes irrelevant.2

The argument behind CMM’s improvement approach is that
as the organization standardizes software processes and the
developers learn techniques, the time required to accomplish
development tasks will reduce and productivity and the quality
of task performance will decrease together with the reliability of
task performance.4 March’s model implies that if the increase in
reliability comes as a consequence of reducing the performance
distribution’s left-hand tail (see Figure A1), the likelihood of fin-
ishing last among several competitors is reduced without chang-
ing the likelihood of finishing first. But, if process improvement
reduces the distribution’s right-hand tail, it might easily decrease
the chance of being best among the competitors despite in-
creases in the organization’s average performance.

An improvement strategy that simultaneously increases av-
erage performance and its reliability is, therefore, not a guar-

antee of competitive advantage (see Figure A1). The conse-
quence of such a strategy is that it helps in competition to
avoid relatively low positions, whereas it has a negative effect
in competition, where finishing near the top is important. Thus,
the price of reliability is a smaller chance of primacy. 

If our main goal is to increase the competitive advantage of
small software organizations, it’s time to move away from the
model-based, one-size-fits-all thinking of the 1990s. Instead, we
should proceed to improvement strategies that focus on learning
from our success to increase the performance distribution’s
right-hand tail while at the same time reducing the left-hand tail
by learning from our failures (see Figure A2). Improvisation is
thus a potential approach for such strategies to succeed.

References
1. W.A. Florac and A.D. Carleton, Measuring the Software Process: Statisti-

cal Process Control for Software Process Improvement, Addison-Wesley,
Reading, Mass., 1999.

2. J.G. March, “Exploration and Exploitation in Organizational Learning,”
Organization Science, Vol. 2, No. 1, Feb. 1991, pp. 71–87.

3. D.A. Levinthal and J.G. March, “The Myopia of Learning,” Strategic
Management J., Vol. 14, Winter 1993, pp. 95–112.

4. M.C. Paulk et al., The Capability Maturity Model: Guidelines for Im-
proving the Software Process, Addison-Wesley, Reading, Mass., 1995.

Current Practices

M1 M2

Fr
eq

ue
nc

y

Successes

Performance

Failures

M1M2

Fr
eq

ue
nc

y

Successes

Performance

Failures

(1)

(2)

Figure A. The impact of (1) ability and (2) reliability
on performance. M denotes the mean performance of
the distributions.



means that we can only outline the planned
software products. Therefore, improvisation
differs from the rational approach in that
there is no detailed plan and that planning and
executing an action converge in time. This last
point is particularly important because time to
market often determines competitiveness. 

Decisions
Improvisation in software development

leads to an emphasis on how developers
interpret the environment and on how we
make choices in an open situation (where
there is more than one possibility). We make
such choices by selecting the aspects we con-
sider relevant for modeling, making avail-
able modes of interaction with the com-
puter, determining the system’s architecture,
and deciding how to use technical resources
for system implementation. Moreover, we
make choices when creating tools and con-
straints for users and other concerned par-
ties. Ultimately, we choose how we conduct
the development process itself.

Only a small part of these choices are
made explicit in terms of predecided plans.
Usually, they are implied by the course of ac-
tion we take, or as Donald Schön argues:
“Our knowing is in our action.”5 Further-
more, each practitioner treats his or her case
as unique and consequently cannot deal with
it by applying standard theories or tech-
niques. Also, our interactions with others
constrain our choices. When seen in these
terms, the task of software development
clearly involves a large portion of improvisa-
tion, and thus social context and technolog-
ical content are essential to a proper under-
standing of software development.

As in the case of a jazz band, close and
sustained interaction between professionals

stimulates creativity in such a way that the
team performs better than its individuals
could do alone.4 The best teams are those
that can honor the individualism of their
members and at the same time act as a unit.

Implications for SPI
Having discussed the concept of improv-

isation and the consequences of CMM-
based improvement (see the sidebar), let’s
now turn to the implications for SPI in small
software organizations. There are many
challenges for an improvisational approach
to SPI to succeed. Two of the most im-
portant challenges are to sustain explo-
ration and to learn from failure.

Exploitation and Exploration 
Software organizations can engage in

two broad kinds of improvement strategies.
They can engage in exploitation—the adop-
tion and use of existing knowledge and ex-
perience—or exploration—the search for
new knowledge, either through imitation or
innovation.6 The basic balance problem is
to undertake enough exploitation to ensure
short-term results and, concurrently, to en-
gage in exploration to ensure long-term sur-
vival.3 A software organization that special-
izes in exploitation will eventually become
better at using an increasingly obsolete tech-
nology, while an organization that special-
izes in exploration will never realize the ad-
vantages of its discoveries (see Table 1).

Improvisation requires both exploitation
and exploration. Determining the appropri-
ate balance is a complicated dynamic that in-
volves considerations of both organizational
size and environmental factors. Because ex-
ploitation generally generates clearer, earlier,
and closer feedback than exploration, the

S e p t e m b e r / O c t o b e r  2 0 0 0 I E E E  S O F T W A R E 85

The task of
software

development
clearly involves

a large 
portion of

improvisation,
and thus social

context and
technological
content are
essential to 

a proper
understanding

of software
development.

Table 1
Exploitation versus Exploration

Exploitation Exploration

Refinement, routinization, and elaboration of existing ideas, paradigms, Experimentation with new ideas, paradigms, technologies, 
technologies, processes, strategies, and knowledge. processes, strategies, and knowledge to find alternatives that 

improve on old ones.
Provides incremental returns on knowledge and low risk of failure. Provides uncertain but potentially high returns on knowledge and carries

significant risk of failure.
Requires personnel who are skilled in existing technologies. Requires personnel who are skilled in emerging or innovative 

technologies.
Can generate short-term improvement results. Often requires a long time horizon to generate improved results.



most common situation is one in which ex-
ploitation tends to drive out exploration.7 To
make improvisation possible for organiza-
tions operating in increasingly more complex
and turbulent environments, it is therefore of
vital importance that they can increase ex-
ploration while sustaining exploitation.

Survey
I studied the balance between exploitation

and exploration in a survey of 120 software
and quality managers representing whole or-
ganizations or independent business units
within 55 Norwegian software companies.
Specifically, I studied how organizational size
and environmental turbulence affected bal-
ance. This was done by comparing the effects
of organizational size by contrasting large or-
ganizations with small ones. I defined the
groups such that large organizations con-
sisted of the upper third of the distribution
(more than 200 developers) and small organ-
izations of the lower third (fewer than 30 de-
velopers). Similarly, I examined the effects of
environmental turbulence by contrasting the
upper and lower third of the operationalized
environment distribution. (For further details
about the survey, contact me at tore.dyba@
informatics.sintef.no.)

Results showed that small software or-
ganizations kept the same level of exploita-
tion both in stable and turbulent environ-
ments. However, they engaged in signifi-
cantly more exploration in turbulent
environments than they did in stable envi-
ronments. The increased level of exploration
did not drive out exploitation. In other

words, we found support for the proposition
that increased environmental turbulence re-
quired increased levels of improvisation.

Similar to small organizations, large soft-
ware organizations did not differ sig-
nificantly in their level of exploitation be-
tween stable and turbulent environments. In
contrast to the small organizations, how-
ever, increased turbulence did not lead to in-
creased levels of exploration. On the con-
trary, the larger organizations seemed to
lower their levels of exploration during tur-
bulent times (see Figure 1). Thus, the results
showed that small software organizations
engaged in significantly more exploration in
turbulent environments than large software
organizations. This supports the assertion
that small software organizations in turbu-
lent environments require improvement
strategies that are more closely aligned with
explorative behavior, while simultaneously
promoting the exploitation of past experi-
ence. This is at the heart of an improvement
strategy based on improvisation.

Most software managers agreed that
changes in their competitive environments
are fast and increasingly unpredictable.
However, managers of large software or-
ganizations still rely on learning from expe-
rience to prepare for the future rather than
exploring new possibilities. They tended to
generate the same responses even when the
stimuli changed—they kept doing what they
do well, rather than risk failure. One expla-
nation for this, which is also a direct conse-
quence of using improvement models such
as the CMM, is institutionalized routines.

8 6 I E E E  S O F T W A R E S e p t e m b e r / O c t o b e r  2 0 0 0

Stable
Environment

(a)

Turbulent

Le
ve

l o
f e

xp
lo

ita
tio

n

Stable
Environment

(b)

Turbulent

Le
ve

l o
f e

xp
lo

ra
tio

n

Small(<30) Large (>200)

High

Low

High

Low

Figure 1. Improvement strategy versus organizational size and environmental turbulence for (a) ex-
ploitation and (b) exploration in small and large organizations.



Large organizations tend to rely on formal
routines for coordination—small organiza-
tions can coordinate their work through
face-to-face communications and socializa-
tions to a much larger extent than large or-
ganizations can. In stable situations, such
routinization can become an effective way
of developing software, but it can also drive
out the exploration of new alternative rou-
tines. The deeper these routines are
grounded in the organizational culture, the
more difficult they are to change and the
more easily they can turn into an obstacle to
improvement.

Learning through Failure
Inherent in the rationalistic approach to

software development is to consider failure
as unacceptable. This is consistent with the
goal of promoting stability and short-term
performance, as is the case in exploitation.
In this situation, success provides an excel-
lent foundation for increased reliability.
Hence, success tends to encourage the main-
tenance of the status quo—if it ain’t broke,
don’t fix it. However, the absence of failure
can result in decreased organizational com-
petence when faced with changing and tur-
bulent environments. Improvisation re-
quires tolerance for failure, and failure is an
essential prerequisite both for learning and
for challenging the status quo. 

In software development, we must be
able to turn unexpected problems and fail-
ures into learning opportunities.8 Rather
than treat failure as unacceptable and stig-
matizing, we should distinguish between
failures that result from carelessness and
those that are a result of intelligent efforts
to experiment outside existing patterns.9 In
this way, we can draw attention to potential
problems and stimulate the search for cre-
ative and innovative solutions when the
environmental factors change. The paradox
is that you have to experience failure to
have success.

S uccessful improvisation is difficult
because it requires both modes of
learning—exploitation and explo-

ration. I hope this article will trigger a fruit-
ful debate on how small—and large—or-
ganizations can balance these modes and

better learn to improvise to cope with their
constantly changing and often unpre-
dictable environments.  

I plan to further develop the concept of
improvisation and organizational learning
processes in software organizations, based
on survey data as well as several case stud-
ies that I have participated in. Also, because
software organizations are social systems
with people and activities that interact ac-
cording to certain theories of action, we
should pay more attention to the inherent
tensions between discipline and creativity,
diversity and consensus, and knowing and
doing, to mention just a few. Improvisation
is a good metaphor for describing the ten-
sion between exploration and exploitation.
A better understanding of improvisation
could, thus, lead to a better understanding
of the other tensions in software develop-
ment and SPI. 

References
1. P.R. Berliner, Thinking in Jazz: The Infinite Art of Im-

provisation, Univ. of Chicago Press, Chicago, 1994.
2. M.A. Ould, “CMM and ISO 9001,” Software Process:

Improvement and Practice, Vol. 2,  No. 4, Dec. 1996,
pp. 281–289.

3. R.L. Glass, Software Creativity, Prentice Hall, Engle-
wood Cliffs, N.J., 1995.

4. W.S. Humphrey, Managing Technical People: Innova-
tion, Teamwork, and the Software Process, Addison-
Wesley, Reading, Mass., 1997.

5. D.A. Schön, The Reflective Practitioner: How Profes-
sionals Think in Action, Basic Books,  New York, 1983.

6. J.G. March, “Exploration and Exploitation in Organi-
zational Learning,” Organization Science, Vol. 2, No.
1, Feb. 1991, pp. 71–87.

7. D.A. Levinthal and J.G. March, “The Myopia of Learn-
ing,” Strategic Management J., Vol. 14, Winter 1993,
pp. 95–112.

8. T.K. Abdel-Hamid and S.E. Madnick, “The Elusive Sil-
ver Lining: How We Fail to Learn from Software Devel-
opment Failures,” Sloan Management Rev., Vol. 32,
No. 1, Fall 1990, pp. 39–48.

9. F.J. Barrett, “Creativity and Improvisation in Jazz and
Organizations: Implications for Organizational Learn-
ing,” Organization Science, Vol. 9, No. 5, 1998, pp.
605–622.

S e p t e m b e r / O c t o b e r  2 0 0 0 I E E E  S O F T W A R E 87

The paradox is
that you have to

experience
failure to have

success.

About the Author

Tore Dybå is a research scientist at the Department of Computer Science at SINTEF (the
Foundation for Scientific and Industrial Research at the Norwegian Institute of Technology). He
is also a research fellow in computer science at the Norwegian University of Science and Tech-
nology, working on a doctoral thesis investigating the key learning processes and factors for
success in SPI. His current research interests include empirical software engineering, software
process improvement, and organizational learning. He received his MSc in computer science
from the Norwegian Institute of Technology. Contact him at SINTEF Telecom and Informatics,
S.P. Andersens vei 15, N-7465 Trondheim, Norway; tore.dyba@informatics.sintef.no.


